Online Catalog > Book
Check-outs :

大數據(Big data)分析與應用 : 使用Hadoop與Spark

  • Hit:295
  • Rating:0
  • Review:0
  • Trackback:0
  • Forward:0



  • Bookmark:
轉寄 列印
第1級人氣樹(0)
人氣指樹
  • keepsite
  • Introduction
  • About Author
  • Collection(0)
  • Review(0)
  • Rating(0)

1.闡述大數據的重要觀念,包括正面的效用與負面的副作用,建立 讀者對大數據正確的認知。 2.說明大數據時代的因應與挑戰,其中有思維的轉變、大數據分析技術、大數據的應用模式分類,也有大數據分析的流程。 3.介紹各行各業的大數據經典應用案例,讓讀者體會大數據分析的應用精髓,有機會發揮創造力,開創自己的大數據應用。 4.介紹大數據分析工具(Hadoop和Spark)的生態系統,期使讀者能充分掌握大數據的技術發展和工具的應用藍圖。 5.透過對大數據工具的實戰演練,包括安裝、設定、指令操作等,使讀者在具備大數據概念正確理解的同時,還能擁有動手實現的功力。 6.學習大數據程式語言Scala,熟悉函數式程式設計(functional programming)的特點,以及它對於大數據的操作與處理,提升讀者對大數據分析演算法的開發能力。 7.使用Spark的機器學習程式庫(MLlib),應用在既有資料集的分析上,讓讀者迅速獲得大數據的預測能力。

1.闡述大數據的重要觀念,包括正面的效用與負面的副作用,建立 讀者對大數據正確的認知。 2.說明大數據時代的因應與挑戰,其中有思維的轉變、大數據分析技術、大數據的應用模式分類,也有大數據分析的流程。 3.介紹各行各業的大數據經典應用案例,讓讀者體會大數據分析的應用精髓,有機會發揮創造力,開創自己的大數據應用。 4.介紹大數據分析工具(Hadoop和Spark)的生態系統,期使讀者能充分掌握大數據的技術發展和工具的應用藍圖。 5.透過對大數據工具的實戰演練,包括安裝、設定、指令操作等,使讀者在具備大數據概念正確理解的同時,還能擁有動手實現的功力。 6.學習大數據程式語言Scala,熟悉函數式程式設計(functional programming)的特點,以及它對於大數據的操作與處理,提升讀者對大數據分析演算法的開發能力。 7.使用Spark的機器學習程式庫(MLlib),應用在既有資料集的分析上,讓讀者迅速獲得大數據的預測能力。 觀念篇 第1 章 進入大數據時代   1-1 大數據時代來了   1-2 「大」數據有多「大」   1-3 大數據的「大」特徵   1-4 大數據的「大」作用   1-5 大數據的「大」問題   1-6 結語 第2 章 大數據挑戰與因應   2-1 大數據的思維轉變   2-2 大數據案例   2-3 大數據的應用模式分類   2-4 大數據計畫的啟動   2-5 結語 第3 章 大數據分析技術   3-1 資料科學   3-2 資料分析工具箱   3-3 大數據分析流程   3-4 結語 工具篇 第4 章 大數據工具與生態系統   4-1 Hadoop/HDFS:分散式檔案系統   4-2 Spark:平行運算框架   4-3 NoSQL 資料庫   4-4 結語 第5 章 大數據作業系統Ubuntu 的安裝   5-1 安裝虛擬化系統工具Oracle VirtualBox   5-2 新增和設定Ubuntu 虛擬機   5-3 安裝和設定Ubuntu 作業系統 第6 章 大數據平台Hadoop 和Spark 的安裝   6-1 建立和設定master 主機   6-2 建立slave1 虛擬機   6-3 繼續master 的設定   6-4 啟動Hadoop 主機集群   6-5 試玩HDFS   6-6 試玩Spark   6-7 結束Spark 和Hadoop 第7 章 HDFS 和Spark RDD 的操作   7-1 HDFS 的操作指令   7-2 Spark RDD 的操作 第8 章 Scala—大數據的程式語言   8-1 Scala 基礎   8-2 基本的資料型態   8-3 資料集Collections   8-4 邏輯流程控制   8-5 函數   8-6 常用資料集處理方法   8-7 模式匹配Pattern Matching 應用篇 第9 章 大數據分析應用基

Must Login
Must Login
Must Login
Must Login